
1

15. December, 2022

ZaynCore

SolidProof_io @solidproof_io

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

Disclaimer	
3
Description	
5
Project Engagement	
5
Logo	
5
Contract Link	
5
Methodology	
7
Used Code from other Frameworks/Smart Contracts (direct imports)	
8
Tested Contract Files	
9
Source Lines	
10
Risk Level	
10
Capabilities	
11
Inheritance Graph	
13
CallGraph	
14
Scope of Work/Verify Claims	
15
Modifiers and public functions	
25
Source Units in Scope	
29
Critical issues	
30
High issues	
30
Medium issues	
30
Low issues	
30
Informational issues	
31
Alleviations	
33
Commented Code exist	
34
Audit Comments	
34
SWC Attacks	 35

2

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

Version Date Description

1.0 23. November 2022 • Layout project
• Automated- /Manual-Security Testing
• Summary

1.1 15. December 2022 • Reaudit

3

http://SolidProof.io

Network
Binance Smart Chain (BEP20)

Website
https://zayn.fi/

Telegram
https://t.me/zaynfi

Twitter
https://twitter.com/ZaynFinance

Medium
https://medium.com/@zfadmin

Discord
https://discord.gg/zaynfi

4

https://zayn.fi/
https://t.me/zaynfi
https://twitter.com/ZaynFinance
https://medium.com/@zfadmin
https://discord.gg/zaynfi

Description
Decentralized Finance (DeFi) is the new frontier of money. A system that
is transparent, fair and empowering. We believe that DeFi should be for
all. For that to happen, it should be as simple as possible. That is where we
come in.

Presenting, the easiest way to earn in DeFi.

Project Engagement
During the 22nd of November 2022, ZaynCore Team engaged
Solidproof.io to audit smart contracts that they created. The engagement
was technical in nature and focused on identifying security flaws in the
design and implementation of the contracts. They provided Solidproof.io
with access to their code repository and whitepaper.

Logo

Contract Link
v1.0
• Github

• https://github.com/ZaynFi/zayn-core
• Commit: b5e8f274efccc4026425f61bd985aad91849c65c

v1.1
• Github

• https://github.com/ZaynFi/zayn-core
• Commit: 54eac8cbc007103a2794dd4f0499bad149525950

5

https://github.com/ZaynFi/zayn-core
https://github.com/ZaynFi/zayn-core

Vulnerability & Risk Level
Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that
can disrupt the
contract functioning
in a number of
scenarios, or creates a
risk that the contract
may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9

A vulnerability that
have informational
character but is not
effecting any of the
code.

An observation that
does not determine a

level of risk

6

Auditing Strategy and Techniques
Applied
Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:
i) Test coverage analysis, which is the process of determining whether the test

cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

7

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

8

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

9

Metrics
Source Lines
v1.0

Risk Level
v1.0

10

Capabilities

Components

Exposed Functions
This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version Contracts Libraries Interfaces Abstract

1.0 6 3 14 1

11

State Variables

Capabilities

Version Public Payable

1.0 232 12

Version External Internal Private Pure View

1.0 193 173 1 24 68

Version Total Public

1.0 47 46

Version
Solidity
Versions
observed

Experim
ental
Features

 Can
Receive
Funds

Uses
Assembl
y

Has
Destroya
ble
Contract
s

1.0 >=0.6.
0  
>=0.6.
2  
>=0.5.
0  
=0.6.6  
^0.8.0  
>=0.6.
0
<0.9.0  
^0.8.5

yes

Version Transfer
s ETH

Low-
Level
Calls

Deleg
ateCa
ll

Uses
Hash
Function
s

EC
Rec
ove
r

New/
Create/
Create2

1.0 yes yes

12

Inheritance Graph
v1.0

13

CallGraph
v1.0

14

Scope of Work/Verify Claims
The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:
1. Is contract an upgradeable
2. Deployer cannot mint any new tokens
3. Deployer cannot burn or lock user funds
4. Deployer cannot pause the contract
5. Deployer cannot set fees
6. Deployer cannot blacklist/antisnipe addresses
7. Overall checkup (Smart Contract Security)

15

Is contract an upgradeable
Name

Is contract an upgradeable? No

16

Write functions of contract
v1.0

17

ZaynVault Wombatstrategy StratManager

18

ZaynRouter

Deployer cannot mint any new tokens

Comments:
v1.0
• Tokens will be minted while deposit in the vault contract

Name Exist Tested Status

Deployer cannot mint ✓ ✓ ✓

19

Deployer cannot burn or lock user funds

Comments:
v1.0
• ZaynDAIZap

• Owner can lock zapIn function by setting paths to zero address
because while swapping it tries to transferFrom this address. This
cause a revert because address zero is not able to allow any token
transfers

• ZaynReferrer
• Owner is able to set the “delaySeconds” without any limitation.

That causes that the block.timestamp must be higher than the
last deposit time plus the delaySeconds otherwise you are not
able to call the “claimBonusUser” function. The same applies to
the “minAmountForBonus” variable which is also called in the
claim function above. Additionally the owner is able to set the
rewardToken address to zero/dead address that will also lock user
funds because in the claimBonusUser function the Referrer
contract is transferring the reward to the user of the set
“rewardToken” which will not be possible. If the claimBonusUser
function will be passed with the above conditions, the owner is
still able to set the “rewardAmountUser” to 0 what means that
the caller will get 0 tokens.

• Tokens
• will be burned while withdrawing in the ZaynVault

Name Exist Tested Status

Deployer cannot lock ✓ ✓ ✘

Deployer cannot burn ✓ ✓ ✓

20

Deployer cannot pause the contract

Comments:
v1.0
• WombatStrategy

• Owner can pause contract

Name Exist Tested Status

Deployer cannot pause ✓ ✓ ✘

21

Deployer cannot set fees

Comments:
v1.0
• FeeManager

• Fees can be set without any limitations

Name Exist Tested Status

Deployer cannot set fees over 25% ✓ ✓ ✘

Deployer cannot set fees to nearly 100% or to 100% ✓ ✓ ✘

22

Deployer can blacklist/antisnipe addresses
Name Exist Tested Status

Deployer cannot blacklist/antisnipe addresses - - -

23

Overall checkup (Smart Contract Security)

Legend

Tested Verified

✓ ✓

Attribute Symbol

Verified / Checked ✓
Partly Verified ⚑
Unverified / Not checked ✘

Not available -

24

Modifiers and public functions
v1.0

ZaynReferrer

25

StratManager

WombatStrategy

26

ZaynVault

ZaynDAIZap

Note:
• Functions from imported libraries will not be listed here
• The ZaynRouter contract is the same as pancakeSwapRouter

functions with the only difference that there will be taken fees
while the following functions

• swapExactTokensForTokens
• swapTokensForExactTokens
• swapExactETHForTokens
• swapTokensForExactETH
• swapExactTokensForETH
• swapETHForExactTokens
• swapExactTokensForTokensSupportingFeeOnTransferToken
• swapExactETHForTokensSupportingFeeOnTransferTokens
• swapExactTokensForETHSupportingFeeOnTransferTokens

Comments
• Deployer can set following state variables without any limitations

• ZaynReferrer
• rewardAmountReferrer
• rewardAmountUser
• minAmountForBonus
• delaySeconds

• FeeManager
• zaynFee

• Up to 100%
• feeChargeSeconds
• chargePerDay
• revShareFees

• Deployer can enable/disable following state variables
• Wombatstrategy

• revShareEnabled
• For enabling to transfer the rev share fees while

charging fees
• ZaynDAPZap

• allowedTokens

• Deployer can set following addresses
• ZaynReferrer

• rewardToken
• StratManager

• onlyManager and owner can set
• zaynFeeRecipient
• vault
• unirouter

27

• keeper
• Wombatstrategy

• zaynReferrer
• ZaynDAIZap

• paths

• Existing Modifiers
• ZaynRouter

• ensure
• StratManager

• onlyManager

• ZaynReferrer
• Owner is able to

• Take out vault and revShareToken balance of the
ZaynReferrer contract by calling rescueToken and passing
the address of it.

• While depositing any investor can set his/her own address from
the wallet (not with the calling address) as referrer

• ZaynVault
• Owner can

• Propose new strategy
• upgrade strategy

• There are several authorities which are authorized to call some
functions, that means, if the owner is renounced, another address is
still authorized to call functions

• Be aware of this

v1.1
Comments
• Owner is able to enable/disable deposit function in the ZaynReferrer

contract
• Added functions

• setRevShareToken
• to set the rev share token

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

28

Source Units in Scope
v1.0

Legend
Attribute Description

Lines total lines of the source unit

nLines normalised lines of the source unit (e.g. normalises functions
spanning multiple lines)

nSLOC normalised source lines of code (only source-code lines; no
comments, no blank lines)

Comment Lines lines containing single or block comments

Complexity Score
a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

29

Audit Results
Critical issues

High issues

Medium issues

Low issues

No critical issues

No high issues

No medium issues

Issue File Type Line Description

#1 Main Contract doesn’t
import npm packages
from source (like
OpenZeppelin etc.)

- We recommend to import all
packages from npm directly
without flatten the contract.
Functions could be modified
or can be susceptible to
vulnerabilities

#2 All A floating pragma is set See
description

Choose a certain version of
pragma instead of floating
(usually started with “^”,
“>=“ etc.

#3 Womba
tStrateg
y

Missing Zero Address
Validation (missing-
zero-check)

54 Check that the address is not
zero

#4 StratMa
mager

Missing Zero Address
Validation (missing-
zero-check)

37
38
39
40
41
55
64
72
80
88

Check that the address is not
zero

30

Informational issues

#5 ZaynRef
errer

Missing Zero Address
Validation (missing-
zero-check)

55
54
62
148

Check that the address is not
zero

#6 ZaynRo
uter

Missing Zero Address
Validation (missing-
zero-check)

407
406
912
901

Check that the address is not
zero

#7 ZaynRef
errer

State variable visibility
is not set

22 It is best practice to set the
visibility of state variables
explicitly

#8 Womba
tStrateg
y

Local variables
shadowing

12
9

Rename the local variables
that shadow another
component

#9 ZaynRef
errer

Local variables
shadowing

34 Rename the local variables
that shadow another
component

#9 ZaynVa
ult

Local variables
shadowing

49, 50 Rename the local variables
that shadow another
component

#10 StratMa
mager

Missing Events
Arithmetic

55 Emit an event for critical
parameter changes

#11 FeeMan
ager

Missing Events
Arithmetic

24, 20 Emit an event for critical
parameter changes

#12 ZaynRef
errer

Missing Events
Arithmetic

77
96
140
144
156
152
89

Emit an event for critical
parameter changes

Issue File Type Line Description

#1 Womba
tStrateg
y

State variables that
could be declared
constant (constable-
states)

28 Add the `constant`
attributes to state variables
that never change

31

#2 IMaster
Womba
tV2

Misspelling See
description

Change following words:

- transfered L38

Make sure to change it
everywhere else as well.

#3 ZaynRef
errer

Misspelling See
description

Change following words:

- eligble L114, L102

Make sure to change it
everywhere else as well.

#4 ZaynRo
uter

Change error messages See
description

Replace “PancakeRouter”
with “ZaynRouter” for a
better overlook

#5 ZaynRef
errer

Unecessary visibility 53 Remove public visibility from
constructor

#6 Womba
tStrateg
y

Unecessary visibility 53 Remove public visibility from
constructor

#7 ZaynVa
ult

Unecessary visibility 52 Remove public visibility from
constructor

#8 ZaynRef
errer

Visibility first 128, 132 Visibility modifier “public”
should come before other
modifiers

#9 Womba
tstrateg
y/
FeeMan
ager

Check zaynFee for 0/
revShareFees for 0

See
description

If the zaynFee is zero and the
revShare is enabled all
zaynFees’s will be sent to the
zaynFeeRecipient. We
recommend you to check
also the zaynFee is 0 in L109.

Additionally the owner is
able to set it to MAX_FEE
(1000 = 100%) to send all fees
to zaynReferrer in
FeeManager contract L16.

Also the owner is able to set
the zaynReferrer to an
arbitrary address in L201.

32

Alleviations
Medium issues
#1 ZaynReferrer
Type: Owner is able to drain out contracts

Description:
The owner is able to call the rescueTokens function and pass the
rewardToken/revShareToken address to it to drain out these contracts.

We recommend you to prevent passing these addresses to the function.

Alleviation:
Given user’s capital is in vault tokens we safeguard against that
rewardToken is topped up by us and it makes sense to have ability to
rescue and revShareToken is sent extra by strategy and makes sense to
have ability to rescue.

We will put these functions behind Multisig, so you can mark them as
centralization risk and mitigation is to put behind msig

#10 Womba
tstrateg
y/
FeeMan
ager

feeChargeSeconds can
lock charge
management fees

See
description

In L186 (Womberstrategy) the
chargeManagementFees
function can only be called
when the block.timestamp is
higher than the
lastFeeCharge + the
feeChargeSeconds.

The owner is able to lock this
function by setting a too
high value for the
“feeChargeSeconds” variable
in FeeManager contract L20.

If the seconds are set to 0 the
fees in the
chargeManagementFees
function L191 will be 0 also.

#11 StratMa
nager

Strategist has no
functionality in the
contract

64 Remove or use the state
variable. Even the
setStrategist function was
not used from the outside of
the contract.

#12 Womba
tStrateg
y

Same function call 83-88 Check the if/else condition.
They are the same logic in
the contract.

33

Commented Code exist
There are some instances of code being commented out in the following
files that should be removed:

Recommendation
Remove the commented code, or address them properly.

Audit Comments
We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
latest/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

23. November 2022:
• Masterchef and Pools were not provided to solidproof. Please dyor here.
• Read whole report and modifiers section for more information

File Line Comment

Wombat
Strategy

86 // uint256 withdrawalFeeAmount =
wantBal.mul(withdrawalFee).div(WITHDRAWAL_MAX);

34

https://docs.soliditylang.org/en/latest/natspec-format.html
https://docs.soliditylang.org/en/latest/natspec-format.html

SWC Attacks
ID Title Relationships Status

SW
C-1
36

Unencrypted
Private Data
On-Chain

CWE-767: Access to Critical
Private Variable via Public
Method

PASSED

SW
C-1
35

Code With No
Effects

CWE-1164: Irrelevant Code PASSED

SW
C-1
34

Message call
with
hardcoded
gas amount

CWE-655: Improper
Initialization

PASSED

SW
C-1
33

Hash
Collisions With
Multiple
Variable
Length
Arguments

CWE-294: Authentication
Bypass by Capture-replay

PASSED

SW
C-1
32

Unexpected
Ether balance

CWE-667: Improper Locking PASSED

SW
C-1
31

Presence of
unused
variables

CWE-1164: Irrelevant Code PASSED

SW
C-1
30

Right-To-Left-
Override
control
character
(U+202E)

CWE-451: User Interface (UI)
Misrepresentation of Critical
Information

PASSED

SW
C-1
29

Typographical
Error

CWE-480: Use of Incorrect
Operator

PASSED

SW
C-1
28

DoS With
Block Gas
Limit

CWE-400: Uncontrolled
Resource Consumption

PASSED

35

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

SW
C-1
27

Arbitrary
Jump with
Function Type
Variable

CWE-695: Use of Low-Level
Functionality

PASSED

SW
C-1
25

Incorrect
Inheritance
Order

CWE-696: Incorrect Behavior
Order

PASSED

SW
C-1
24

Write to
Arbitrary
Storage
Location

CWE-123: Write-what-where
Condition

PASSED

SW
C-1
23

Requirement
Violation

CWE-573: Improper Following
of Specification by Caller

PASSED

SW
C-1
22

Lack of Proper
Signature
Verification

CWE-345: Insufficient
Verification of Data
Authenticity

PASSED

SW
C-1
21

Missing
Protection
against
Signature
Replay Attacks

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

SW
C-1
20

Weak Sources
of
Randomness
from Chain
Attributes

CWE-330: Use of Insufficiently
Random Values

PASSED

SW
C-11
9

Shadowing
State Variables

CWE-710: Improper Adherence
to Coding Standards

NOT
PASSED

SW
C-11
8

Incorrect
Constructor
Name

CWE-665: Improper
Initialization

PASSED

SW
C-11
7

Signature
Malleability

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

36

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

SW
C-11
6

Timestamp
Dependence

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
5

Authorization
through
tx.origin

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
4

Transaction
Order
Dependence

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race
Condition')

PASSED

SW
C-11
3

DoS with
Failed Call

CWE-703: Improper Check or
Handling of Exceptional
Conditions

PASSED

SW
C-11
2

Delegatecall
to Untrusted
Callee

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
1

Use of
Deprecated
Solidity
Functions

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
0

Assert
Violation

CWE-670: Always-Incorrect
Control Flow Implementation

PASSED

SW
C-1
09

Uninitialized
Storage
Pointer

CWE-824: Access of
Uninitialized Pointer

PASSED

SW
C-1
08

State Variable
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

NOT
PASSED

SW
C-1
07

Reentrancy
CWE-841: Improper
Enforcement of Behavioral
Workflow

PASSED

SW
C-1
06

Unprotected
SELFDESTRUC
T Instruction

CWE-284: Improper Access
Control

PASSED

37

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

SW
C-1
05

Unprotected
Ether
Withdrawal

CWE-284: Improper Access
Control

PASSED

SW
C-1
04

Unchecked
Call Return
Value

CWE-252: Unchecked Return
Value

PASSED

SW
C-1
03

Floating
Pragma

CWE-664: Improper Control of
a Resource Through its
Lifetime

NOT
PASSED

SW
C-1
02

Outdated
Compiler
Version

CWE-937: Using Components
with Known Vulnerabilities

PASSED

SW
C-1
01

Integer
Overflow and
Underflow

CWE-682: Incorrect
Calculation

PASSED

SW
C-1
00

Function
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

PASSED

38

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

39

SolidProof_io @solidproof_io

https://twitter.com/SolidProof_io
https://t.me/solidproof_io

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Alleviations
	Commented Code exist
	Audit Comments
	SWC Attacks

